
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 J

un
e 

20
23

 

royalsocietypublishing.org/journal/rsos
Research
Cite this article: Flores V, Carter GG, Halczok
TK, Kerth G, Page RA. 2020 Social structure and

relatedness in the fringe-lipped bat

(Trachops cirrhosus). R. Soc. Open Sci. 7: 192256.
http://dx.doi.org/10.1098/rsos.192256
Received: 30 December 2019

Accepted: 4 March 2020
Subject Category:
Organismal and evolutionary biology

Subject Areas:
behaviour

Keywords:
bats, dispersal, Trachops cirrhosus,

social structure
Authors for correspondence:
Victoria Flores

e-mail: vflores@uchicago.edu

Gerald G. Carter

e-mail: carter.1640@osu.edu
© 2020 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
†Equal contributions.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

4933056.
Social structure and
relatedness in the
fringe-lipped bat
(Trachops cirrhosus)
Victoria Flores1,2,†, Gerald G. Carter2,3,†,

Tanja K. Halczok4, Gerald Kerth4 and Rachel A. Page2

1Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street,
Chicago, IL 60637, USA
2Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón,
Republic of Panamá
3Department of Evolution, Ecology, and Organismal Biology, The Ohio State University,
318 W. 12th Ave, Columbus, OH 43210, USA
4Greifswald University, Zoological Institute and Museum, Soldmannstr. 14,
17489 Greifswald, Germany

VF, 0000-0002-8021-9787; GGC, 0000-0001-6933-5501;
RAP, 0000-0001-7072-0669

General insights into the causes and effects of social structure canbe
gained from comparative analyses across socially and ecologically
diverse taxa, such as bats, but long-term data are lacking for most
species. In the neotropical fringe-lipped bat, Trachops cirrhosus,
social transmission of foraging behaviour is clearly demonstrated
in captivity, yet its social structure in the wild remains unclear.
Here, we used microsatellite-based estimates of relatedness and
records of 157 individually marked adults from 106 roost captures
over 6 years, to infer whether male and female T. cirrhosus have
preferred co-roosting associations and whether such associations
were influenced by relatedness. Using a null model that
controlled for year and roosting location, we found that both male
and female T. cirrhosus have preferred roosting partners, but that
only females demonstrate kin-biased association. Most roosting
groups (67%) contained multiple females with one or two
reproductive males. Relatedness patterns and recapture records
corroborate genetic evidence for female philopatry and male
dispersal. Our study adds to growing evidence that many bats
demonstrate preferred roosting associations, which has the
potential to influence social information transfer.
1. Introduction
Social structure can have profound behavioural and evolutionary
consequences, but correctly interpreting social structure requires

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.192256&domain=pdf&date_stamp=2020-04-15
mailto:vflores@uchicago.edu
mailto:carter.1640@osu.edu
https://doi.org/10.6084/m9.figshare.c.4933056
https://doi.org/10.6084/m9.figshare.c.4933056
http://orcid.org/
http://orcid.org/0000-0002-8021-9787
http://orcid.org/0000-0001-6933-5501
http://orcid.org/0000-0001-7072-0669
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:192256
2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 J

un
e 

20
23

 

understanding the behaviours that drive it. Aggregations can occur passively when individuals are
attracted to a common resource, such as a roosting site, or when specific individuals preferentially
associate more than expected from mere co-attraction to resources [1,2]. These preferred associations can
often occur even in animals demonstrating fission–fusion social dynamics, in which temporary groups of
variable size and composition frequently break up and reform (e.g. [3,4]). In addition, dispersal by one
sex can lead to kin-biased associations in the philopatric sex [5], and these kin-biased associations can be
adaptive when the indirect fitness benefits of kin cooperation are not outweighed by increased kin
competition [6].

Many bat species demonstrate non-random social structure including stable social relationships
persisting for years, despite frequent roost switching and fission–fusion dynamics (reviewed by [4,7,8]).
For example, preferred associations are evident in philopatric female vampire bats, Desmodus rotundus
[9–11], female Bechstein’s bats, Myotis bechsteinii [3,12,13], male Jamaican fruit-eating bats, Artibeus
jamaicensis [14,15], and both male and female Spix’s disk-winged bats, Thyroptera tricolor [16,17]. In these
species, individuals switch between a number of roosts, but emergent social structures can be detected
by observing marked individuals over time [4]. In bats, reproduction is slow (usually one or two pups a
year) but lifespans can be quite long (up to 40 years), one or both of the sexes disperse at sexual
maturity, and kinship within groups typically has a low mean and high variance [4,8,12,18–23]. Taken
together, these factors create opportunities for both long-term and kin-biased social relationships, but the
degree of kinship bias in association rates varies greatly between species [4]. In many bats, kinship does
not seem to be a key driver of co-roosting associations or even cooperative interactions [4,8,12].

Variation in how kinship affects preferred associations in bats provides an opportunity for
comparative analyses on the social and ecological causes and consequences of social structure [4], but
data from more species are needed for rigorous comparative studies. The fringe-lipped bat, Trachops
cirrhosus, a member of the ecologically diverse family of leaf-nosed bats, Phyllostomidae, has been
studied intensively to understand its foraging behaviour, sensory ecology and social learning [24–28],
but the social structure of T. cirrhosus is largely unknown.

Fringe-lipped bats are known to day roost in mixed-sex groups of up to 50 individuals in hollow
trees, culverts, buildings and caves [29–31]. The mating system of T. cirrhosus remains unclear [32].
Females give birth to one offspring at a time coinciding with the start of the rainy season [32], but the
gestation length is unknown. During the putative mating season, reproductive males have enlarged
testes and create an odorous substance that is smeared on their forearm, called forearm crust [32,33].
Fringe-lipped bats conduct short flights hunting for insects, lizards and frogs, and individuals have
home ranges estimated at 60 ha, flying an average of 218 m from their day roost to foraging areas
[29]. Captive studies show that individuals learn different prey calls and will learn to associate novel
acoustic cues with prey [24]. Novel acoustic cues can also be learned socially and transmitted across
individuals [25,27]. Given that social structure can influence both foraging [34] and social information
transfer [35,36], the social structure of the fringe-lipped bat is of special interest.

The aim of our study was to infer the social structure of T. cirrhosus from roost capture records taken
opportunistically over a 6-year period. First, we described the size and sex composition of groups
captured at roosts. Second, we used ecologically relevant null models to test whether T. cirrhosus have
preferred roosting partners, and if so, whether these co-roosting associations were influenced by sex
or relatedness. Genetic analyses suggest that male T. cirrhosus are the dispersing sex [37], so we
predicted that capture data would corroborate genetic evidence for male-biased dispersal. We also
predicted that social structure would be driven by kin-biased associations in females that would be
evident even after controlling for overlapping individual roost preferences.
2. Material and methods
2.1. Group captures
Fieldwork was conducted from July 2012 to November 2018. We captured bats using mist nets (Avinet,
Dryden, NY) set at the exits of roosts along Pipeline Road and Gamboa Road (figure 1), in Soberanía
National Park, Panamá (9.0743° N, 79.6598°W). Roosts were in trees, culverts beneath roads, or in
abandoned human-constructed structures in the forest. The Chagres River divides Gamboa Road from
Pipeline Road. The Gamboa Road population is genetically differentiated from the Pipeline Road
population [37]. When testing the links between age, association and relatedness, we accounted for
these population differences in our null models such that effects were tested within each population.
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Figure 1. Map of study area. Black circles denote roost locations in two populations: along Pipeline Road and along Gamboa Road.
Bats never switched roosts between populations.
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To remove the effects of parental care on association and relatedness, we focused on adults in our
social structure analyses. We identified juveniles by the presence of epiphyseal gaps in the phalanges
[38]. For some captures, we also determined reproductive status. We classified females as pregnant by
gentle palpation of the abdomen or as lactating by the enlarged size of nipples and the presence of
milk, and classified males as reproductive by the scrotal position and presence of enlarged testes [38].
To identify recaptured bats, we marked each bat with a subcutaneous passive integrated transponder
tag (Biomark, Boise, ID). All bats were released at their site of capture. Although capture and marking
may impact animal movement, T. cirrhosus in some populations frequently switch roosts regardless of
being captured [29].
2.2. Genetic relatedness
We obtained wing tissue samples using a sterilized 4 mm biopsy punch. Tissue samples were stored in
80% ethanol until DNA extraction using an ammonium acetate precipitation method, and bats were
genotyped at 16 microsatellite markers [37]. Dyadic relatedness was determined using triadic
maximum likelihood in COANCESTRY 1.0.1.5 [39]. See [37] for details.
2.3. Group composition
We assessed group composition based on sex and reproductive status. Roosts varied in distance to each
other (0.084–0.44 km) and individuals used multiple roosts, so we used a permuted t-test (10 000
permutations) to assess whether the mean distances between the roosts used by males and females
differed by sex. To estimate a rate of roost switching between known roosts for bats captured four or
more times, we calculated the number of individual roosts used by each bat divided by the total
number of roost visits by that bat, and then used a permuted t-test (10 000 permutations) to assess
differences between males and females.
2.4. Testing for sex-biased philopatry
To assess evidence for sex-biased philopatry, we used a permuted F-test (5000 permutations) to compare
the variance in time between the first juvenile capture date and the last capture date as an adult, for males
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and females. Male-biased dispersal predicts that young-of-the-year juvenile females, but not males,
would be recaptured in later years as adults.

2.5. Testing for preferred associations
Similar to previous social network analyses in bats [4], we considered individuals to be associated if they
occupied the same day roost at the same time. Although presence in the same space does not always
mean individuals are interacting, individuals were frequently clustered in close proximity, often in
small culverts less than a metre in diameter. As suggested by Hoppitt & Farine [40], we assessed
dyadic association using the simple ratio index, the probability of observing both individuals together
given that one has been seen. To assess evidence for preferred associations, we calculated observed
and expected social differentiation, the variation in the probability of a dyad being associated, as the
coefficient of variation of the simple ratio index [1].

2.6. Testing effects of relatedness on association in male dyads, female dyads and
female–male dyads

For assessing dyadic relatedness by sex, we used all adult bats. However, we tested our hypotheses about
predictors of dyadic association rates using the subset of bats that were captured at least four times. This
analysis is preferable because dyadic association rates cannot be precise for any individual seen only a
few times [1,2]. For example, association rates are not accurate for bats only seen once or twice. Unlike
the estimates of dyadic relatedness, the precision of dyadic association rates is based on small and
unequal samples of observations: only 77 of the 137 adult bats were observed more than once, and
only five bats were observed at least 10 times (figure 2). We only include bats observed at least four
times in our final analyses (n = 34), but we also report the results when including all bats.

For comparison with our observed association network, we generated 5000 expected association
networks using pre-network permutations [41]. Individuals can be highly associated due to preferring
the same roost or being present in the same year. To control for these effects, we constructed our
expected (null) networks by repeatedly swapping pairs of individual bat observations within the
same population, roost and year. For example, in a given swap, the identity of bat 1 in a particular
roost on day 1 in the year 2015 might be swapped with the identity of bat 3 in the same roost on day
4 in that same year. If an observed effect is real, then it should be greater than the null effects from
the permuted networks. We calculated one-sided p-values as the proportion of null effects more
extreme than the observed effect, and then doubled their value to estimate two-sided p-values.

To assess whether relatedness differs for same-sex dyads, we constructed three binary matrices (0,1),
each encoding the presence of a certain dyad type (female–female, male–male or female–male). We then
tested for a correlation with the relatedness matrix using three Mantel tests (5000 permutations), via the
vegan R package [42]. We similarly tested for an effect of each dyad type on the association matrix using
the quadratic assignment procedure (QAP) in the asnipe R package [43] to compare the three observed
beta coefficients with those expected from the random network data (custom null values). Being a
female–female dyad or a male–male dyad had opposite effects on association rates (i.e. positive versus
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negative coefficients), so we conducted tests of non-random association and kin-biased association
separately for adult female–female dyads and male–male dyads. To test for an effect of relatedness on
association within each dyad type (female–female, male–male and female–male), we again used QAP
in the asnipe R package to compare observed and expected null beta coefficients.
ietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:192256
3. Results
3.1. Size and composition of captured groups
We captured 157 individual bats (69 females, 88 males). Of these, 61 females and 76 males were captured at
least once as adults, and 16 females and 18 males were captured at least four times as adults. We did not
detect a difference in recapture rates between females (n = 39, median = 3, IQR = 3.5, range = 2–12) and
males (n = 46, median = 3, IQR= 2; range = 2–11, mean difference =−0.88, df = 1, p = 0.10). We recorded
106 group captures across 32 different roost sites (415 observations of individual bats). Sizes of captured
groups ranged from 1 to 13 individuals (median = 4, IQR= 3). However, these capture numbers were
sometimes a subset of actual roosting groups, because individuals sometimes escaped during roost
captures. An average of four bats per roosting group is, therefore, an underestimate of true expected
group size in roosts. Note that our use of constrained pre-network permutations also control for possible
sampling biases, for example, if males are more likely to escape than females [41].

We assessed individuals’ reproductive status in the captured groups where reproductive status was
recorded, which included 42 mixed-sex groups, 18 all-male groups and three all-female groups. Among
the mixed-sex groups, 33 of 42 groups had one reproductive male with forearm crust [32,33], and 9
groups had two reproductive males with forearm crusts. The average relatedness of the two males in
these groups (0.08) was not higher than the mean relatedness expected from two random adult males
captured at those same times and locations (95% CI: 0.01–0.14). All-male groups always included at
least one reproductive male with a forearm crust (median = 2, IQR = 1, range of males in a group = 1–
6). We did not detect a difference in the number of males in all-male groups by female reproductive
season (permutation test: mean difference = 1.05, n = 18, p = 0.16). In all eight cases when only one
individual was captured in the roost, it was a reproductive male with forearm crust; females were
never observed roosting alone.

Bats that were captured at least four times were seen in 3.7 different roosts on average (range = 2–8,
median = 3, IQR = 3). We did not detect that adult males used more roosts than adult females (18 males:
range = 2–8, median = 4, IQR = 2.25; 16 females: range = 2–7, median = 3, IQR = 3; permutation test: mean
difference = 0.22, n = 34, p = 0.67), or that they disproportionately used roosts that were further apart
(permutation test: mean difference = 252 m, n = 34, p = 0.28).

3.2. Sex-biased philopatry
Fifty-two bats were captured as juveniles, and 25 of those were recaptured as adults (males = 13,
females = 12). Consistent with male-biased mortality or dispersal, the variation in time between first
juvenile capture and last adult capture was greater for females than males (figure 3). Juvenile males
were recaptured up to 1.9 years later (range = 195–691 days) while juvenile females were recaptured
up to 4.2 years later (range = 165–1514 days, figure 3).

3.3. Preferred associations
When controlling for roost and year, preferred roosting partners were detected in adult dyads (CV = 2.54,
n = 34 bats, p = 0.0002), including female–female dyads (CV = 2.27, n = 16 bats, p < 0.0002) and male–male
dyads (CV = 3.10, n = 18 bats, p < 0.0002). We confirmed that social differentiation was more difficult to
detect when including additional bats only observed a few times. When not excluding bats seen less
than four times, we could only detect social differentiation in females (137 adults: CV = 5.45, p = 0.2;
61 adult females: CV = 4.24, p = 0.004, 76 adult males: 6.13, p = 0.6).

3.4. Effects of relatedness on association
When testing for kin-biased association, we did separate analyses for female–female and male–male
dyads because adult female–female dyads were more related (Mantel: r = 0.04, 56 bats, p = 0.009) and
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also had higher association rates (QAP beta = 0.03, p = 0.004), compared with other dyads. Male–male
dyads did not have clearly higher or lower relatedness (Mantel: r =−0.009, n = 67, p = 0.7), but they
had lower rates of association (QAP beta =−0.02, p = 0.012) compared with other dyads.

Relatedness predicted higher association between adults (QAP beta = 0.26, n = 34 bats, p < 0.0001)
and between adult females (QAP beta = 0.43, n = 16 bats, p < 0.0001), but not between males (QAP
beta = −0.05, n = 18 bats, p > 0.5, figure 4). These effects were still evident, but weaker, when we
included adults captured fewer than four times.
4. Discussion
In this study, we used data from bats captured in their roosts over a 6-year period to characterize the group
composition and social structure of fringe-lipped bats. Our results suggest that the majority of T. cirrhosus
roost either in all-male groups or in single-male/multi-female groups. We found evidence for female
philopatry in our long-term capture data. In addition, we found preferred co-roosting associations in both
sexes, and that relatedness predicted associations among female–female dyads, but not male–male dyads.

Analyses of roost capture records over a 6-year period corroborate past evidence that fringe-lipped
bats often roost in mixed-sexed groups [29–31], but we also observed single-sex groups, most often
all-male groups. All-male groups always included at least one male with odorous forearm crust, they
were present year-round, and the size of these groups did not appear to vary with the reproductive
season. This suggests that reproductive T. cirrhosus males with forearm crust are not solely
aggregating to perform odorous displays during the mating season, as seen for instance in the buffy
flower bat, Erophylla sezekorni [44]. Instead, these all-male groups comprised multiple T. cirrhosus
males with odorous forearm crust could be bachelor groups with chemical profiles that vary from
males that roost with females, as seen in greater spear-nosed bats, Phyllostomus hastatus [45]. Most
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mixed-sex groups were comprised of one reproductive male with forearm crust and several females,
consistent with a single-male/multi-female mating system.

Although the spatial and temporal distribution of resources and mates are important drivers of
resource or female-defense polygyny, the patterns of roost use we observed suggest that reproductive
males cannot easily defend females or roosts and that roosts did not appear to be limited. Culvert
roosts were situated in close proximity to one another, yet one group of bats would only occupy one
culvert at a time leaving several nearby suitable roosts empty. Not only were many culverts available,
but the bats often moved between tunnels even without being disturbed. For example, bats would
occupy Tunnel 11 one day, then appear to move to Tunnel 12 a few days later, then move back to
Tunnel 11 and then to Tunnel 9. Roost microclimate could be a factor if this varies from day to day
within culverts, but a more likely explanation is that this population demonstrates fission–fusion
social dynamics, like many other bats [3,4,7–9]. Furthermore, whether or not the rates of natural roost
switching differ depending on the reproductive season should be explored further.

We also captured mixed-sex groups with more than two reproductive males in the group, but we did
not see strong evidence that the two males were more related than expected by chance, as seen in the
Jamaican fruit-eating bat, Artibeus jamaicensis [14,15]. In greater sac-winged bats, Saccopteryx bilineata,
unrelated peripheral and territorial males both mate with females in the group, but territorial male
S. bilineata are older and sire more offspring [46,47]. In these two-male/multi-female roosts, it would
be interesting to investigate whether both male T. cirrhosus in the roost mate with females. Further
studies are needed to determine the mating system in T. cirrhosus.

We took advantage of existing long-term capture records to infer evidence of social structure. Our
sample size of repeated observations of individuals did not allow for precise descriptions or
comparisons of social network structure, e.g. [4], but we detected preferred associations among both
sexes and kin-biased associations among pairs of females but not males. Preferred associations
occurred more than expected from a null model that accounted for year, population and shared use of
roosts through the use of ‘pre-network permutations’ [41].

A limitation of our study was the lack of observations. Specifically, we lacked the number of repeated
observations to compare social network structure with other species [4] or to test for modularity,
assortativity or sex differences in centrality. Instead, we focused on what we could learn from these
opportunistic long-term data. Testing for evidence of social differentiation and kin-biased association
does not require highly accurate estimates of association rates between any two particular bats. One
potential caveat in our analysis is missing observations of bats. Our analyses assume that missing bats
were random and did not introduce biased associations between sex, kinship and association. However,
even if certain types of individuals (e.g. males or females) were less likely to be captured, this bias is
controlled for by our pre-network permutations, because the same biased sample exists in the permuted
networks [41]. We followed the suggestion of [40] to use the simple ratio index, because more complex
indices that attempt to account for missing observations are harder to interpret and require additional
assumptions to reliably increase accuracy of association estimates. For example, the half-weight index
does not result in better estimates of association rates unless the probability of missing an associated
dyad is exactly half the probability of missing either individual in the absence of other [40]. Another
caveat is that disturbances from roost captures may have led to increased movements between roosts.

In this species, recapture records were consistent with either male-biased mortality at a young age or
male-biased dispersal. Even stronger evidence for male-biased dispersal comes from the finding that
gene flow in fringe-lipped bats is male mediated. Male dispersal is common in mammals, including
many temperate and neotropical bats [4], but females often disperse in cases where inbreeding is
possible because male tenure exceeds the age of first breeding in females [5,48]. Male dispersal and
female philopatry are consistent with patterns of kin-biased associations.

Kin-biased association among females can occur through kin discrimination or as a mere byproduct of
females remaining in their natal group. The ability of females to recognize their adult maternal kin (e.g.
mothers and daughters) is at least plausible for several reasons. In all bats studied to date, mothers
appear to recognize their pups individually by scent and calls [49–54], and there is growing evidence
that adult social recognition in bats is also common [54]. In T. cirrhosus, pups depend on maternal care
for at least the first month (V.F. 2013, personal observation), which could lead to recognition of the same
offspring later in life. For example, in common vampire bats Desmodus rotundus where females are also
philopatric, mother–daughter relationships that begin as maternal care continue into adulthood as
cooperative relationships that involve vocal recognition by contact call, social grooming and regurgitated
food sharing [11,55–57]. Currently, there is not good evidence for recognition of unfamiliar kin in bats
because studies with adequate observational or experimental power have yet to be conducted. Finally,
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since females have preferred co-roosting relationships, and births are not random throughout the year [32],
this could lead to further social bonding between similar age daughters (e.g. [58]).

Preferred or kin-biased associations between fringe-lipped bats could affect social learning and foraging,
especially if roosts act as information centres (e.g. [59,60]). CaptiveT. cirrhosus can acquire information about
novel cues via social learning [25,27], and proximity sensors show that some individuals from the same
social group do encounter each other while foraging [61]. Our analysis of social networks in this species
using existing records paves the way for possible field experiments that integrate social relationships and
cognition, such as testing if social information transfer differs between bats that are unfamiliar versus
highly associated.

Ethics. All sampling protocols followed guidelines approved by the American Society of Mammalogists for capture,
handling, and care of mammals [62] and were approved by the Smithsonian Tropical Research Institute (STRI)
Institutional Animal Care and Use Committee (#20100816-1012-16, #2014-0101-2017, #2017-0102-2020). All research
was licensed and approved by the government of Panama (SE/A-94-11, SE/A-58-12, SE/A-19-13, SE/A-86-14, SE/A
69-15, SE/AH-2-6).
Data accessibility. Data and R code to replicate our analysis are included as electronic supplementary material.
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